收敛级数有界是否一定有极限


收敛级数有界是否一定有极限

文章插图

收敛级数是收敛的,一定有极限 。
【收敛级数有界是否一定有极限】收敛级数是柯西于1821年引进的,它是指部分和序列的极限存在的级数 。收敛级数分条件收敛级数和绝对收敛级数两大类,其性质与有限和(有限项相加)相比有本质的差别 , 例如交换律和结合律对它不一定成立 。
收敛级数的基本性质主要有:级数的每一项同乘一个不为零的常数后 , 它的收敛性不变;两个收敛级数逐项相加或逐项相减之后仍为收敛级数;在级数前面加上有限项,不会改变级数的收敛性;原级数收敛,对此级数的项任意加括号后所得的级数依然收敛;级数收敛的必要条件为级数通项


    特别声明:本站内容均来自网友提供或互联网,仅供参考,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。