BTA药物的意思 btat( 八 )


回过头来说变换的问题,我刚才说,“固定坐标系下一个对象的变换等价于固定对象所处的坐标系变换”,那个“固定对象”我们找到了,就是那个向量 。但是坐标系的变换呢?我怎么没看见?请看:Ma=Ib我现在要变M为I,怎么变?对了,再前面乘以个M-1,也就是M的逆矩阵 。换句话说,你不是有一个坐标系M吗,现在我让它乘以个M-1,变成I,这样一来的话,原来M坐标系中的a在I中一量,就得到b了 。我建议你此时此刻拿起纸笔,画画图,求得对这件事情的理解 。比如,你画一个坐标系,x轴上的衡量单位是2,y轴上的衡量单位是3,在这样一个坐标系里,坐标为(1,1)的那一点,实际上就是笛卡尔坐标系里的点(2,3) 。而让它原形毕露的办法,就是把原来那个坐标系:2 0 0 3 的x方向度量缩小为原来的1/2,而y方向度量缩小为原来的1/3,这样一来坐标系就变成单位坐标系I了 。保持点不变,那个向量现在就变成了(2, 3)了 。怎么能够让“x方向度量缩小为原来的1/2,而y方向度量缩小为原来的1/3”呢?就是让原坐标系:2 0 0 3 被矩阵:1/2 0 0 1/3 左乘 。而这个矩阵就是原矩阵的逆矩阵 。
下面我们得出一个重要的结论:“对坐标系施加变换的方法,就是让表示那个坐标系的矩阵与表示那个变化的矩阵相乘 。”再一次的,矩阵的乘法变成了运动的施加 。只不过,被施加运动的不再是向量,而是另一个坐标系 。如果你觉得你还搞得清楚,请再想一下刚才已经提到的结论,矩阵MxN,一方面表明坐标系N在运动M下的变换结果,另一方面,把M当成N的前缀,当成N的环境描述,那么就是说,在M坐标系度量下,有另一个坐标系N 。这个坐标系N如果放在I坐标系中度量,其结果为坐标系MxN 。
在这里,我实际上已经回答了一般人在学习线性代数是最困惑的一个问题,那就是为什么矩阵的乘法要规定成这样 。简单地说,是因为:
1.从变换的观点看,对坐标系N施加M变换,就是把组成坐标系N的每一个向量施加M变换 。
2.从坐标系的观点看,在M坐标系中表现为N的另一个坐标系,这也归结为,对N坐标系基的每一个向量,把它在I坐标系中的坐标找出来,然后汇成一个新的矩阵 。
3.至于矩阵乘以向量为什么要那样规定,那是因为一个在M中度量为a的向量,如果想要恢复在I中的真像,就必须分别与M中的每一个向量进行內积运算 。
我把这个结论的推导留给感兴趣的朋友吧 。应该说,其实到了这一步,已经很容易了 。综合以上,矩阵的乘法就得那么规定,一切有根有据,绝不是哪个神经病胡思乱想出来的 。我已经无法说得更多了 。矩阵又是坐标系,又是变换 。到底是坐标系,还是变换,已经说不清楚了,运动与实体在这里统一了,物质与意识的界限已经消失了,一切归于无法言说,无法定义了 。到了这个时候,我们不得不承认,我们伟大的线性代数课本上说的矩阵定义,是无比正确的:“矩阵就是由m行n列数放在一起组成的数学对象 。”
好了,这基本上就是我想说的全部了 。


特别声明:本站内容均来自网友提供或互联网,仅供参考,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。