高中解析几何知识点归纳 高中数学解析几何是哪本书





高中解析几何知识点归纳 高中数学解析几何是哪本书

文章插图
一、解析几何的产生
十六世纪以后,由于生产和科学技术的发展,天文、力学、航海等方面都对几何学提出了新的需要 。比如,德国天文学家开普勒发现行星是绕着太阳沿着椭圆轨道运行的,太阳处在这个椭圆的一个焦点上;意大利科学家伽利略发现投掷物体是沿着抛物线运动的 。这些发现都涉及到圆锥曲线,要研究这些比较复杂的曲线,以前的方法显然已不适应了,这就导致了解析几何的出现 。
1637年,法国的哲学家和数学家笛卡尔发表了他的著作《方法论》,这本书的后面有三篇附录,一篇叫《折光学》、一篇叫《流星学》、一篇叫《几何学》 。当时的这个“几何学”实际上指的是数学,就像我国古代“算术”和“数学”是一个意思一样 。
笛卡尔的《几何学》共分三卷,第一卷讨论尺规作图;第二卷是曲线的性质;第三卷是立体和“超立体”的作图,但它实际是代数问题,探讨方程的根的性质 。后世的数学家和数学史学家都把笛卡尔的《几何学》作为解析几何的起点 。
从笛卡尔的《几何学》中可以看出,笛卡尔的中心思想是建立起一种“普遍”的数学,把算术、代数、几何统一起来 。他设想,把任何数学问题化为一个代数问题,再把任何代数问题归结到去解一个方程式 。
为了实现上述的设想,笛卡尔从天文和地理的经纬制度出发,指出平面上的点和实数对(x,y)的对应关系 。x,y的不同数值可以确定平面上许多不同的点,这样就可以用代数的方法研究曲线的性质 。这就是解析几何的基本思想 。
具体地说,平面解析几何的基本思想有两个要点:第一,在平面建立坐标系,一点的坐标与一组有序的实数对相对应;第二,在平面上建立了坐标系后,平面上的一条曲线就可由带两个变数的一个代数方程来表示了 。从这里可以看到,运用坐标法不仅可以把几何问题通过代数的方法解决,而且还把变量、函数以及数和形等重要概念密切联系起来 。
解析几何的产生并不是偶然的 。在笛卡尔写《几何学》以前,就有许多学者研究过用两条相交直线作为一种坐标系;也有人在研究天文、地理的时候,提出了一点位置可由两个“坐标”(经度和纬度)来确定 。这些都对解析几何的创建产生了很大的影响 。
在数学史上,一般认为和笛卡尔同时代的法国业余数学家费尔马也是解析几何的创建者之一,应该分享这门学科创建的荣誉 。
费尔马是一个业余从事数学研究的学者,对数论、解析几何、概率论三个方面都有重要贡献 。他性情谦和,好静成癖,对自己所写的“书”无意发表 。但从他的通信中知道,他早在笛卡尔发表《几何学》以前,就已写了关于解析几何的小文,就已有了解析几何的思想 。只是直到1679年,费尔马死后,他的思想和著述才从给友人的通信中公开发表 。
笛卡尔的《几何学》,作为一本解析几何的书来看,是不完整的,但重要的是引入了新的思想,为开辟数学新园地做出了贡献 。
二、解析几何的基本内容
在解析几何中,首先是建立坐标系 。如上图,取定两条相互垂直的、具有一定方向和度量单位的直线,叫做平面上的一个直角坐标系oxy 。利用坐标系可以把平面内的点和一对实数(x,y)建立起一一对应的关系 。除了直角坐标系外,还有斜坐标系、极坐标系、空间直角坐标系等等 。在空间坐标系中还有球坐标和柱面坐标 。
坐标系将几何对象和数、几何关系和函数之间建立了密切的联系,这对空间形式的研究归结成较成熟也容易驾驭的数量关系的研究了 。用这种方法研究几何学,通常就叫做解析法 。这种解析法不但对于解析几何是重要的,而且对几何学的各个分支的研究也是十分重要的 。


特别声明:本站内容均来自网友提供或互联网,仅供参考,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。