
文章插图
【导数的几何意义】1、导数的几何意义:曲线过切点的切线的斜率 。
2、导数(Derivative) , 也叫导函数值 。又名微商 , 是微积分中的重要基础概念 。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时 , 函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在 , a即为在x0处的导数 , 记作f'(x0)或df(x0)/dx 。
3、导数是函数的局部性质 。一个函数在某一点的导数描述了这个函数在这一点附近的变化率 。如果函数的自变量和取值都是实数的话 , 函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率 。导数的本质是通过极限的概念对函数进行局部的线性逼近 。例如在运动学中 , 物体的位移对于时间的导数就是物体的瞬时速度 。
- 赛尔号小米的身世第几集
- 英国十大著名地标 巨石阵是英国最具标志性的纪念碑
- 世界十大盐沼 天空之境被称作是最接近天堂的地方
- 世界最美的眼睛 伊丽莎白泰勒那迷人心神的紫眸
- 赣南十大特色小吃 去赣州必吃的小吃有哪些
- 历史上十大最美丽的爱情故事虐心爱情故事
- 脚裂口是什么原因 治愈脚裂的10种方法
- 世界十大最昂贵的房子 排名第一价值10亿美元
- 世界十大最常见的自然资源 却面临枯竭的危险
- 中国十大新的一线城市排名 武汉排第三!
特别声明:本站内容均来自网友提供或互联网,仅供参考,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。
