- ## # A tibble: 500 x 30
- ## V1 V2 V3 V4 V5 V6 V7 V8
- ## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
- ## 1 0.8212500 1.2155090 -0.64860899 -0.7001262 -1.9640742 1.1692107 0.28598652 -0.1664266
- ## 2 0.9264925 -1.1855031 -1.18297879 0.9828354 1.0693610 -0.2302219 0.57772625 -0.8738714
- ## 3 -1.5719712 0.8568961 -0.02208733 1.7445962 -0.4148403 -2.0289054 -1.31228181 -1.2441528
- ## 4 0.7419447 -0.9452052 -1.61821790 1.0015587 -0.4589488 0.5154490 0.29189973 0.1114092
- ## 5 -0.1333660 0.5085678 0.04739909 -0.4486953 -0.2616950 -0.1554108 -1.24834832 -1.0498054
- ## 6 -0.5672062 0.6020396 -2.10300909 0.3119233 0.3272173 -0.8671885 0.97512759 -0.7216256
- ## 7 1.9683411 2.5162198 1.61109738 1.0047913 -0.5194647 1.0738680 -0.16176095 -0.4267418
- ## 8 0.2857727 -1.7017703 1.41062569 -0.5823727 -1.3330908 1.7929250 0.06396841 -0.6818909
- ## 9 -0.5339434 0.1725089 0.93504676 -1.9956942 -0.9021089 -0.2624043 0.97406411 0.5166823
- ## 10 0.8081052 -0.9662501 0.54666915 -0.8388913 0.9665053 1.4039598 0.63502500 0.3429640
- ## # ... with 490 more rows, and 22 more variables: V9 <dbl>, V10 <dbl>, V11 <dbl>, V12 <dbl>,
- ## # V13 <dbl>, V14 <dbl>, V15 <dbl>, V16 <dbl>, V17 <dbl>, V18 <dbl>, V19 <dbl>, V20 <dbl>,
- ## # V21 <dbl>, V22 <dbl>, V23 <dbl>, V24 <dbl>, V25 <dbl>, V26 <dbl>, V27 <dbl>, V28 <dbl>,
- ## # V29 <dbl>, V30 <dbl>
- ## # A tibble: 500 x 1
- ## value
- ## <dbl>
- ## 1 3
- ## 2 2
- ## 3 2
- ## 4 2
- ## 5 3
- ## 6 3
- ## 7 3
- ## 8 1
- ## 9 1
- ## 10 1
- ## # ... with 490 more rows
- plot(ridge2, xvar = "lambda")

文章图片

文章图片

文章图片
- ## 用10折交叉验证CV进行岭回归
- ## 类型.测量:用于交叉验证的损失 。
- 类型.测量=“偏差” ,
- ## 多项式回归
- ## ‘alpha = 1’ 是套索惩罚 , 'alpha=0'是岭惩罚 。
- ## 惩罚vs CV MSE图
- plot(ridge2_cv)

文章图片
- ## 在误差最小λ处提取系数
- lambda.min
- ## s:需要进行预测的惩罚参数“lambda”的值 。 默认值是用于创建模型的整个序列 。
- do.call(cbind, coef( cv, s = lambda.min))
- ## 31 x 3 sparse Matrix of class "dgCMatrix"
- ## 1 1 1
- ## (Intercept) -0.030926870 -0.012579891 0.043506761
- ## V1 0.056754184 -0.332936704 0.276182520
- ## V2 -0.330771038 -0.135465951 0.466236989
- ## V3 0.417313228 -0.166953973 -0.250359256
- ## V4 -0.275107590 -0.075937714 0.351045304
- ## V5 -0.359310997 0.447318724 -0.088007727
- ## V6 0.318490592 -0.042273343 -0.276217249
- ## V7 -0.069203544 0.103874053 -0.034670509
- ## V8 0.398432356 0.056457793 -0.454890149
- ## V9 -0.100873703 -0.831473315 0.932347018
- ## V10 -0.079409535 0.550465763 -0.471056227
- ## V11 0.015539259 0.022872091 -0.038411350
- ## V12 -0.023384035 -0.037367749 0.060751784
- ## V13 -0.162456798 0.271096200 -0.108639401
- ## V14 0.173128811 -0.127758267 -0.045370544
- ## V15 -0.029448593 0.035626357 -0.006177764
- ## V16 -0.078135662 0.066353666 0.011781996
- ## V17 0.144753874 -0.137960413 -0.006793461
- ## V18 0.032929352 0.071275386 -0.104204738
特别声明:本站内容均来自网友提供或互联网,仅供参考,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。