xtabs(~ y_multi_pred_class + y_multi)
- ## y_multi
- ## y_multi_pred_class 1 2 3
- ## 1 84 20 16
- ## 2 30 136 19
- ## 3 28 18 149
## [1] 0.738
交叉验证测试集正确分类率
- lapply(unique(foldid), function(id) {
- ## 拟合排除测试集(foldid==id)
- ## 使用模型拟合最佳lambda测试集Y?hat
- y_pred <- (predict(fit, newx = x_multi[foldid == id,], type = "class",
- s = lambda.min))
- ## 测试集Y
- y <- y_multi[foldid == id]
- ## 测试集CCR
- mean(y == y_pred)
- }) %>%
## [1] 0.686
二元逻辑回归示例
- ## # A tibble: 100 x 30
- ## V1 V2 V3 V4 V5 V6 V7 V8
- ## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
- ## 1 -0.61926135 0.01624409 -0.62606831 0.41268461 0.4944374 -0.4493269 0.6760053 -0.06771419
- ## 2 1.09427278 0.47257285 -1.33714704 -0.64058126 0.2823199 -0.6093321 0.3547232 -0.62686515
- ## 3 -0.35670402 0.30121334 0.19056192 0.23402677 0.1698086 1.2291427 1.1628095 0.88024242
- ## 4 -2.46907012 2.84771447 1.66024352 1.56881297 -0.8330570 -0.5620088 -0.6142455 -1.76529838
- ## 5 0.56728852 0.88888747 -0.01158671 0.57627526 -0.8689453 -0.3132571 0.6902907 -1.29961200
- ## 6 0.91292543 0.77350086 0.55836355 -0.53509922 0.3507093 -0.5763021 -0.3882672 0.55518663
- ## 7 0.09567305 0.14027229 -0.76043921 -0.04935541 1.5740992 -0.1240903 -1.1106276 1.72895452
- ## 8 1.93420667 -0.71114983 -0.27387147 1.00113828 1.0439012 0.8028893 -0.6035769 -0.51136380
- ## 9 0.28275701 1.05940570 -0.03944966 0.30277367 -0.9161762 0.6914934 0.6087553 0.30921594
- ## 10 0.80143492 1.53674274 -1.01230763 -0.38480878 -2.0319100 0.2236314 -1.1628847 -0.52739792
- ## # ... with 90 more rows, and 22 more variables: V9 <dbl>, V10 <dbl>, V11 <dbl>, V12 <dbl>,
- ## # V13 <dbl>, V14 <dbl>, V15 <dbl>, V16 <dbl>, V17 <dbl>, V18 <dbl>, V19 <dbl>, V20 <dbl>,
- ## # V21 <dbl>, V22 <dbl>, V23 <dbl>, V24 <dbl>, V25 <dbl>, V26 <dbl>, V27 <dbl>, V28 <dbl>,
- ## # V29 <dbl>, V30 <dbl>
- ## # A tibble: 100 x 1
- ## value
- ## <int>
- ## 1 0
- ## 2 1
- ## 3 1
- ## 4 0
- ## 5 1
- ## 6 0
- ## 7 0
- ## 8 0
- ## 9 1
- ## 10 1
- ## # ... with 90 more rows
- ## 执行岭回归
- ## 二元逻辑回归
- family = "binomial",
- ## “alpha=1”是套索惩罚 , “alpha=0”是岭惩罚 。

特别声明:本站内容均来自网友提供或互联网,仅供参考,请勿用于商业和其他非法用途。如果侵犯了您的权益请与我们联系,我们将在24小时内删除。